\(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx\) [155]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 121 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(2 A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(2*A+B)*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-A*sin(d*x+c)*cos(d*x+c
)^(1/2)/a^2/d/(1+cos(d*x+c))-1/3*(A-B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^2

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3057, 2827, 2720, 2719} \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {(2 A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {A \sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]

[Out]

(A*EllipticE[(c + d*x)/2, 2])/(a^2*d) + ((2*A + B)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - (A*Sqrt[Cos[c + d*x]
]*Sin[c + d*x])/(a^2*d*(1 + Cos[c + d*x])) - ((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x
])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a (5 A+B)-\frac {1}{2} a (A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx}{3 a^2} \\ & = -\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a^2 (2 A+B)+\frac {3}{2} a^2 A \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4} \\ & = -\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {A \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}+\frac {(2 A+B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2} \\ & = \frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(2 A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.66 (sec) , antiderivative size = 695, normalized size of antiderivative = 5.74 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=-\frac {4 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}-\frac {2 B \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (-\frac {4 A \csc (c)}{d}-\frac {4 A \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )\right )}{3 d}-\frac {2 (A-B) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(a+a \cos (c+d x))^2}-\frac {A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (a+a \cos (c+d x))^2} \]

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]

[Out]

(-4*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]
*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcT
an[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) - (2*B*Cos[
c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x -
 ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]
])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2 + (d*x)/2]
^4*Sqrt[Cos[c + d*x]]*((-4*A*Csc[c])/d - (4*A*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d - (2*Sec[c/2]*Sec[c/
2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/(3*d) - (2*(A - B)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(a
 + a*Cos[c + d*x])^2 - (A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[
d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d
*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*
x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Co
s[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(a + a*Cos[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(349\) vs. \(2(165)=330\).

Time = 3.99 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.89

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (12 A \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 A \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 B \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 B \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A -B \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(350\)

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^2/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2*d*x+1/2*c)^6-4*A*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*A*cos
(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),
2^(1/2))-2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2))*cos(1/2*d*x+1/2*c)^3-16*A*cos(1/2*d*x+1/2*c)^4-2*B*cos(1/2*d*x+1/2*c)^4+3*A*cos(1/2*d*x+1/2*c)^2+3*B*cos(1
/2*d*x+1/2*c)^2+A-B)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x
+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.63 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, A \cos \left (d x + c\right ) + 4 \, A - B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-2 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (2 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-2 i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (2 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-2 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (2 i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (-i \, \sqrt {2} A \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} A \cos \left (d x + c\right ) - i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (i \, \sqrt {2} A \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} A \cos \left (d x + c\right ) + i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/6*(2*(3*A*cos(d*x + c) + 4*A - B)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-2*I*A - I*B)*cos(d*x + c)^2
- 2*sqrt(2)*(2*I*A + I*B)*cos(d*x + c) + sqrt(2)*(-2*I*A - I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*s
in(d*x + c)) - (sqrt(2)*(2*I*A + I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(-2*I*A - I*B)*cos(d*x + c) + sqrt(2)*(2*I*A
+ I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(-I*sqrt(2)*A*cos(d*x + c)^2 - 2*I*sqrt(
2)*A*cos(d*x + c) - I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
c))) + 3*(I*sqrt(2)*A*cos(d*x + c)^2 + 2*I*sqrt(2)*A*cos(d*x + c) + I*sqrt(2)*A)*weierstrassZeta(-4, 0, weiers
trassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**2/cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2), x)